LISMATH
Lisbon Mathematics PhD

The LisMath Seminar

The purpose of the LisMath seminar is to provide an initiation into research as well as to make students train their oral skills.  Each LisMath student will be asked to give a talk, based on research papers, chosen from a list covering a variety of research topics. The seminar should be comprehensible to everyone. The student will be asked to make an effort to explain why he/she finds the topic interesting, and how it fits into the broader research picture. The LisMath seminar will thus help broadening the students training.
 
The LisMath seminar takes place on a weekly basis in the Spring semester. Attendance is mandatory for LisMath students. Venue: Wednesday 17h-18h, alternating between FCUL (seminar room 6.2.33 of the Department of Mathematics) and IST (seminar room P9 of the Department of Mathematics) except for 26/6/2018 and 15/7/2019, LisMath Seminar Day, when all sessions will be held at the former location.

Europe/Lisbon — Online

Javier Orts, LisMath, Instituto Superior Técnico, Universidade de Lisboa.
Quiver Representations.

A quiver is a directed graph where multiple arrows between two vertices and loops are allowed. A representation of a quiver $Q$, over a field $K$, is an assignment of a finite dimensional $K$-vector space $V_i$ to each vertex $i$ of $Q$ and a linear map $f_a:V_i\rightarrow V_j$ to each arrow $a:i\rightarrow j$. Given a quiver $Q$, the set of all representations of $Q$ forms a category, denoted by $\mathrm{Rep}(Q)$. A connected quiver is said to be of finite type if it has only finitely many isomorphism classes of indecomposable representations.

Quiver representations have remarkable connections to other algebraic topics, such as Lie algebras or quantum groups, and provide important examples of moduli spaces in algebraic geometry [3].

The main goal of this work would consist, first, of good comprehension of the category $\mathrm{Rep}(Q)$. Then, the student would cover the basics on quiver representations to be able to prove Gabriel's theorem [1], following a modern approach, as in [2]:

A connected quiver is of finite type if and only if its underlying graph is one of the ADE Dynkin diagrams $A_n$, $D_n$, for $n \in \mathbb N$, $E_6$, $E_7$ or $E_8$. Moreover, the indecomposable representations of a given quiver of finite type are in one-to-one correspondence with the positive roots of the root system of the Dynkin diagram.

These basic concepts involve topics such as the Jacobson radical, Dynkin diagrams or homological algebra of quiver representations.

Bibliography:

[1] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Mathematica 6, pp. 71–103 (1972).

[2] H. Derksen and J. Weyzman, An Introduction to Quiver Representations, Graduate Studies in Mathematics 184, American Mathematical Society (2017).

[3] A. Soibelman, Lecture Notes on Quiver Representations and Moduli Problems in Algebraic Geometry, arXiv:1909.03509 (2019)

Additional file

JavierOrts-QuiverRepresentations.pdf